e i = —
= . — - — — e - = —
ﬁ = =" e e e
e e - -

T ——— _"—#-

~ Error Handling by Design

Andy Longshaw.

~ Blue Skyline Ltd. _-i

W

© BlueSkyline Ltd. 2004

E Who are you?
= Pre-requisites
— An understanding of distributed systems
o Objectives

mlne !issss for reportlwﬁ‘.er - |

— Some approaches to dealing W|th these issues

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 2

e Reoent recogn1t|on of multiple stakeholders

~ — Principal ones: Users/customers, business sponsors,
developers

= Often the needs of other stakeholders are only
considered briefly
— Testers, deployment team, support staft
— “Why should we go out of our way to make their jobs

asier?” e —
is'as'muich about operation

support as , about features and filnctionality

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 3

= e
.

_= Overall context:

— Errors in distributed business systems

= Mining a coherent set of patterns
— How did we get here?
— From a conversation with Eeini,\WWoods _ _

g\lo obvious source of

— Some overlap with other resources

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 4

ES

~
g — =
T = o
' —

Service

ssauisng
19Ae"
ejeq

J9Ae
uoljejuasaid

{\

Thin Client

(v
c
5 & 5 - Database
® Sl S Cluster
58 o= " '
= i
EE w T Ef) -
= S|
=

‘Legacy’
Thick Client Network Network System
boundary boundary

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 5

 - Need |nformat|on to diagnose and f|x

problems
= [nformation must be correct and appropriate

= Too much error information is as,muech; of a
problem as too little

- Eg[;or handling must be applied in a

or community are the forgotten
stakeholders, not the end user

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 6

Big Outer
Try Block

Hide Technical
Detail from Users
Log at Distribution Log Unexpected
Boundary Errors

Split Domain and Make Exceptions
Technical Errors Exceptional

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 7

—

N —

1 UniqueError |

i |dentifier

"“Wanﬂllng teehnlcal errors in doma/n code makes
- this code-more obscure and difficult to maintain.

= Domain and technical errors form different "areas
of concern”

— Technical errors "rise up” from the infrastructure
usiness errors from an incorrect business action

Complex > much more
ruc 0 go wrong!

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 8

—
e ———

nical error handling %

. Iecln

~ complicates domain code <
= Handling needs to be different érgs?-’.—s

— May retry technical errors
— Handled in different places (e.g. facade)
— Interesting to different stakeholders

:Split domai] / ling. Create
eption/error hierarchies and handle at

different points and in different ways as appropriate.

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 9

_= Technical errors should not cause

domain errors
— Don’t “cross the beams”

= Different approach at technical boundary
— Distribution or edge of application

gﬁomam errors should pass.‘seamlessly’......

ﬂphmmﬂ gged/handled

= Business code can ignore technical errors

O

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 10

———— P = S
[——

= ——

= Multi-tier systems, particularly those that use
~different technologies in different tiers

= Error information is bulky

= Access to remote error logs is more difficult

= Error location information is of little use remotely

:Propagating technical errors between system tiers

esults in e ails ending up i ations (suchas
ey are difficult to access and in a
context far removed from that of the original error.

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 11

- IR - -
e e T e e iy i e e

e
-

'?échTﬁ’cgl errors occur, log them on the syst
- where they occur passing a simpler generic SystemError
back to the caller for reporting at the end-user interface.

= |nclude with other !,«g&l‘f"}‘:“‘:
boundary processing XN (K

| XX AT KX

— Marshaling)’Q‘{ "QQ

— Security and audit % %%

: : XX omer X X X
-0glin'a way appropriate to platiorm, . $:¢.9:02¢4.9.9.¢:

0gged Withreue: tenit-ieﬂty!@ed platiorm
fOrs, pDuUt...
= .. error trail across multiple machines

O

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 12

_Vﬁu'are applylng Log at D/strlbut/on

- Boundary

= Cross-system forensics takes a lot of effort
— Load balancing between tiers
— Clock skew can confuse timestamps
— Bursts of errors are hard to disentangle

~ Ifan err _ ystem causes
-on errors on other tiers you get a distorted view of
the number of errors in the system and their origin.

‘

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 13

— o —

e ___.z___ﬂ"-'-ﬂ-—-l-t,.___..__ —

Gener ate a Umque 1de tifier when the original error occurs
__and propagate this back to the caller. Always include the
Un/que Identifier with any error log information so that
multiple log entries from the same cause can be associated
and the underlying error can be correctly identified.

= Must be unique across whole system
= GUID/UUID. is a good start

ay need te a,string ter
e e

* Include whenever the error is logged \
@

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 14

Unexpected errors can occur in any system no matter how

~ well it is tested... are unlikely to be handled...will propagate

right to the edge of the system and will appear to “crash” the
application if not handled at that point.

= | ots of potential information lost
= Users tend not to be very technical

:J?{eporting of error context + con IS inaccurate
ﬂﬂdgﬂ@ Wa'mr u '|f'$1'o_ssible

= Trying to avoid error handling in multiple layers

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 15

system to catch and handle errors...report errors in a

consistent way at a level of detail appropriate to the user
constituency.

= Typically a try/catch in ‘'main’ application
— Exe/class, JSP/ASP, service/daemon

o !Egg.user communities about it
- . - —— ""hlll_'/ *"
ppropri rne ZZ—z7) B

] ‘echnical Error Detail \Vf
From Users ?\}'

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 16

- A = = —

ConS|stent éﬁd U‘riderstandable appllcatlon
behaviour when an unexpected error is
encountered

= Reduces the need for error handling
elsewhere

rinformation is not lost

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 17

|
S—

e ————— e

e a '_ -

~The technical details of errors that occur are typically of nc
e interest to the end-users of a system.

If exposed to such users, this error information may cause
unnecessary concern and support overhead.

e —_— L -

= | argely non-technical user community

= Detailed error information is
ot useful to them and... T ——

D End up with bad reputation for application

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 18

“Implement a standard mechanism for reporting unexpec
.. technical errors to end-users...in a consistent way at a level
of detail appropriate

= Provide simple API to encourage
consistent use

= | og technical detail for support staff
~uRrovide:meaningful message to user

= Vake it clear itsissnot their fatiltss

ate error reporting
where possible

O

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 19

‘--——Much' domafn code /ncludes hanaT'hg o excep fonal
- [business] conditions ...If such routine error conditions are

logged, this makes real errors requiring operator intervention
difficult to spot.

= Domain processing with potential
for business failure conditions

— E.g. product search failure
usiness errors are logged

Jy_—?

e logging code reduces
maintainability

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 20

= -
. —

—— _"‘-r—'--—--—:r---_..—._l— —

e
-——-—
T e e T e

~Implem nfsepamte err an liIng mechanisms for axpect

_and unexpected errors. Error conditions that are expected to

arise in the course of normal domain processing should not
be logged but handled in the code or by the user.

= | og unexpected errors applying other patterns

= Error logs are smaller and clearer

= | ogged errors are worth investigating by support team
y still record business ‘errors’ for differentistakehpldessy..

WI%@#@ usability)
curity department (e.g. logon fallures)

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Page 21

O

“—laﬁg-uages include exceptlon handlmg fac:lltle“ ‘F’
-~ if exceptions are used to indicate expected error conditions
...calling code becomes much more difficult to understand.

= Domain errors are expected but unexpected errors
will always occur

— E.g. from bad configuration
= | arge number of exceptions IS a problem
— Especially.checked exceptions
sNDenitwarprcode to handle
expected errors as exceptions

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 22

e S
" — - e ———— e e
E— e, —— ,._._._. - — — =

-—-I_

ndicate expeTeT domaln errors by means of return codes.
- Only use exceptions to indicate runtime problems such as
underlying platform errors or configuration/data errors.

= Reserved return value for standard error conditions
— E.g. empty list
— Handle in code flow

= Raise exceptions for unexpected conditions

;Eg. platform, configuration or data progﬁms R ——
~— Handle withiSpECiiicpProcessing -

Semantics/expectations of method' calllare important here
— FindXXX vs Retrieve XXX

O

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 23

"- Aspects of d1str|buted busmess systems -
bring their own issues for error handling
= Need coherent set of solutions

= Paper reviewed at EuroPLoP 2004
hiitps/wwwiblueskyline.com/ErrorPatterns

_ S = R—
esignitor Maintenance -

Intenance by Design”

Error Handling by Design © BlueSkyvline Ltd. 2004 Version 1.0 Paqge 24

