
©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004

Error Handling by Design

Andy LongshawAndy Longshaw
Blue Skyline Ltd.Blue Skyline Ltd.

andy@blueskyline.comandy@blueskyline.com

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 22

Some important questions

Who am I?Who am I?
Who are you?Who are you?
PrePre--requisitesrequisites
–– An understanding of distributed systemsAn understanding of distributed systems
ObjectivesObjectives
–– Examine issues for reporting of errors in Examine issues for reporting of errors in

distributed systemsdistributed systems
–– Some approaches to dealing with these issuesSome approaches to dealing with these issues

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 33

The forgotten stakeholders

Recent recognition of multiple stakeholdersRecent recognition of multiple stakeholders
–– Principal ones: Users/customers, business sponsors, Principal ones: Users/customers, business sponsors,

developersdevelopers
Often the needs of other stakeholders are only Often the needs of other stakeholders are only
considered brieflyconsidered briefly
–– Testers, deployment team, support staffTesters, deployment team, support staff
–– ““Why should we go out of our way to make their jobs Why should we go out of our way to make their jobs

easier?easier?””
Success of a system is as much about operation Success of a system is as much about operation
and support as about features and functionalityand support as about features and functionality

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 44

What are we trying to do?

Overall context:Overall context:
–– Errors in distributed business systemsErrors in distributed business systems
Mining a coherent set of patternsMining a coherent set of patterns
–– How did we get here?How did we get here?
–– From a conversation with From a conversation with EoinEoin WoodsWoods
–– No obvious source of No obvious source of

guidance/adviceguidance/advice
–– Some overlap with other resourcesSome overlap with other resources

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 55

App Container

Presentation
Layer

The Landscape

App
Container

Presentation
Layer

B
usiness
Layer

D
ata

Layer
Database
Cluster

Thin Client

Network
boundary

Network
boundary

Thick Client
‘Legacy’
System

B
usiness
Layer

D
ata

Layer

ServiceService

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 66

Some initial thoughts

Need information to diagnose and fix Need information to diagnose and fix
problemsproblems
Information must be correct and appropriateInformation must be correct and appropriate
Too much error information is as much of a Too much error information is as much of a
problem as too littleproblem as too little
Error handling must be applied in a Error handling must be applied in a
consistent and disciplined wayconsistent and disciplined way
Error community are the forgotten Error community are the forgotten
stakeholders, not the end userstakeholders, not the end user

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 77

Overview
Big Outer
Try Block

Log at Distribution
Boundary

Log Unexpected
Errors

Make Exceptions
Exceptional

Split Domain and
Technical Errors

Unique Error
Identifier

Hide Technical
Detail from Users

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 88

Split domain and technical - 1

Domain and technical errors form different "areas
of concern"
– Technical errors "rise up“ from the infrastructure
– Business errors from an incorrect business action

Complex distributed applications => much more
infrastructure to go wrong!

Handling technical errors in domain code makes
this code more obscure and difficult to maintain.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 99

Split domain and technical - 2
Technical error handling
complicates domain code
Handling needs to be different
– May retry technical errors
– Handled in different places (e.g. façade)
– Interesting to different stakeholders

Split domain and technical error handling. Create
separate exception/error hierarchies and handle at

different points and in different ways as appropriate.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1010

Split domain and technical – 3

Technical errors should not causeTechnical errors should not cause
domain errorsdomain errors
–– DonDon’’t t ““cross the beamscross the beams””
Different approach at technical boundaryDifferent approach at technical boundary
–– Distribution or edge of applicationDistribution or edge of application
–– Domain errors should pass Domain errors should pass ‘‘seamlesslyseamlessly’’
–– Technical errors should be logged/handledTechnical errors should be logged/handled
Business code can ignore technical errorsBusiness code can ignore technical errors

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1111

Log at Distribution Boundary - 1

Multi-tier systems, particularly those that use
different technologies in different tiers
Error information is bulky
Access to remote error logs is more difficult
Error location information is of little use remotely

Propagating technical errors between system tiers
results in error details ending up in locations (such as

end-user PCs) where they are difficult to access and in a
context far removed from that of the original error.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1212

Log at Distribution Boundary – 2

Include with otherInclude with other
boundary processingboundary processing
–– MarshalingMarshaling
–– Security and auditSecurity and audit

Log in a way appropriate to platformLog in a way appropriate to platform
Logged with other potentially related platform Logged with other potentially related platform
errors, buterrors, but……
…… error trail across multiple machineserror trail across multiple machines

When technical errors occur, log them on the system
where they occur passing a simpler generic SystemError
back to the caller for reporting at the end-user interface.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1313

Unique Error Identifier - 1

You are applying You are applying Log at Distribution Log at Distribution
BoundaryBoundary
CrossCross--system forensics takes a lot of effortsystem forensics takes a lot of effort
–– Load balancing between tiersLoad balancing between tiers
–– Clock skew can confuse timestampsClock skew can confuse timestamps
–– Bursts of errors are hard to disentangleBursts of errors are hard to disentangle

If an error on one tier in a distributed system causes
knock-on errors on other tiers you get a distorted view of

the number of errors in the system and their origin.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1414

Unique Error Identifier – 2

Must be unique across whole systemMust be unique across whole system
GUID/UUID is a good startGUID/UUID is a good start
May need to pass as a string toMay need to pass as a string to
maintain integritymaintain integrity
Include whenever the error is loggedInclude whenever the error is logged

Generate a Unique Identifier when the original error occurs
and propagate this back to the caller. Always include the

Unique Identifier with any error log information so that
multiple log entries from the same cause can be associated

and the underlying error can be correctly identified.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1515

Big Outer Try Block - 1

Lots of potential information lostLots of potential information lost
Users tend not to be very technicalUsers tend not to be very technical
–– Reporting of error context + content is inaccurateReporting of error context + content is inaccurate
–– Will ignore and work around if possibleWill ignore and work around if possible

Trying to avoid error handling in multiple layersTrying to avoid error handling in multiple layers

Unexpected errors can occur in any system, no matter how
well it is tested… are unlikely to be handled…will propagate
right to the edge of the system and will appear to “crash” the

application if not handled at that point.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1616

Big Outer Try Block - 2

Typically a try/catch in Typically a try/catch in ‘‘mainmain’’ applicationapplication
–– Exe/class, JSP/ASP, service/daemonExe/class, JSP/ASP, service/daemon
Tell user communities about itTell user communities about it
–– Appropriate to their needsAppropriate to their needs
–– See See Hide Technical Error DetailHide Technical Error Detail

From UsersFrom Users

Implement a Big Outer Try Block at the “edge” of the
system to catch and handle errors…report errors in a

consistent way at a level of detail appropriate to the user
constituency.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1717

Big Outer Try Block – 3

Consistent and understandable application Consistent and understandable application
behaviour when an unexpected error is behaviour when an unexpected error is
encounteredencountered
Reduces the need for error handling Reduces the need for error handling
elsewhereelsewhere
Error information is not lostError information is not lost

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1818

Hide Technical Detail - 1

Largely nonLargely non--technical user communitytechnical user community
Detailed error information isDetailed error information is
–– Not useful to them andNot useful to them and……
–– …… scaryscary
End up with bad reputation for applicationEnd up with bad reputation for application

The technical details of errors that occur are typically of no
interest to the end-users of a system.

If exposed to such users, this error information may cause
unnecessary concern and support overhead.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 1919

Hide Technical Detail - 2

Provide simple API to encourageProvide simple API to encourage
consistent useconsistent use
Log technical detail for support staffLog technical detail for support staff
Provide meaningful message to userProvide meaningful message to user
–– Make it clear that it is not their faultMake it clear that it is not their fault

Automate error reportingAutomate error reporting
where possiblewhere possible

Implement a standard mechanism for reporting unexpected
technical errors to end-users…in a consistent way at a level

of detail appropriate

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 2020

Log Unexpected Errors - 1

Domain processing with potentialDomain processing with potential
for business failure conditionsfor business failure conditions
–– E.g. product search failureE.g. product search failure

If business errors are loggedIf business errors are logged
then logs fill up quicklythen logs fill up quickly
More logging code reducesMore logging code reduces
maintainabilitymaintainability

Much domain code includes handling of exceptional
[business] conditions …If such routine error conditions are

logged, this makes real errors requiring operator intervention
difficult to spot.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 2121

Log Unexpected Errors - 2

Log unexpected errors applying other patternsLog unexpected errors applying other patterns
Error logs are smaller and clearerError logs are smaller and clearer
Logged errors are worth investigating by support teamLogged errors are worth investigating by support team
May still record business May still record business ‘‘errorserrors’’ for different stakeholdersfor different stakeholders
–– Business analysts and development team (usability)Business analysts and development team (usability)
–– Security department (e.g. logon failures)Security department (e.g. logon failures)

Implement separate error handling mechanisms for expected
and unexpected errors. Error conditions that are expected to
arise in the course of normal domain processing should not

be logged but handled in the code or by the user.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 2222

Make Exceptions Exceptional - 1

Domain errors are expected but unexpected errors Domain errors are expected but unexpected errors
will always occurwill always occur
–– E.g. from bad configurationE.g. from bad configuration

Large number of exceptions is a problemLarge number of exceptions is a problem
–– Especially checked exceptionsEspecially checked exceptions

DonDon’’t warp code to handlet warp code to handle
expected errors as exceptionsexpected errors as exceptions

…languages include exception handling facilities …However,
if exceptions are used to indicate expected error conditions
…calling code becomes much more difficult to understand.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 2323

Make Exceptions Exceptional - 2

Reserved return value for standard error conditionsReserved return value for standard error conditions
–– E.g. empty listE.g. empty list
–– Handle in code flowHandle in code flow

Raise exceptions for unexpected conditionsRaise exceptions for unexpected conditions
–– E.g. platform, configuration or data problemsE.g. platform, configuration or data problems
–– Handle with specific processingHandle with specific processing

Semantics/expectations of method call are important hereSemantics/expectations of method call are important here
–– FindXXXFindXXX vsvs RetrieveXXXRetrieveXXX

Indicate expected domain errors by means of return codes.
Only use exceptions to indicate runtime problems such as

underlying platform errors or configuration/data errors.

©© BlueSkylineBlueSkyline Ltd. 2004Ltd. 2004Error Handling by DesignError Handling by Design Version 1.0 Page Version 1.0 Page 2424

Summary

Aspects of distributed business systems Aspects of distributed business systems
bring their own issues for error handlingbring their own issues for error handling
Need coherent set of solutionsNeed coherent set of solutions

Paper reviewed at Paper reviewed at EuroPLoPEuroPLoP 20042004
http://www.blueskyline.com/ErrorPatternshttp://www.blueskyline.com/ErrorPatterns
Also Focus group Also Focus group ““Design for Maintenance Design for Maintenance --
Maintenance by DesignMaintenance by Design””

